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Abstract—In this paper, the mutual cooperative communication
between multiple nodes in a wireless network is efficiently achieved
through a novel concept of Space-Time Network Coding (STNC). Unlike
the conventional point-to-point cooperative communications between
two nodes with N relay nodes deployed in between, simultaneous
transmissions from the different N nodes acting as source/relay nodes
are performed within 2N time-slots. In particular, the communication is
split into two phases: 1) Broadcasting Phase and 2) Cooperation Phase.
In the Broadcasting Phase, each node broadcasts its data symbol to the
other nodes in the network in its own time-slot, alternatively; while in
the Cooperation Phase, in each time-slot, a set of (N−1) nodes transmit
while a single destination node receives the other nodes’ transmissions.
Specifically, each node employing a selective Decode-and-Forward (DF)
cooperative protocol, performs a linear combination of the other nodes
data symbols and all the (N − 1) nodes simultaneously transmit their
signals to a single receiving node; which then performs joint multiuser
detection to separate the different nodes’ symbols. Exact symbol-error-
rate (SER) expressions for arbitrary order M-ary Phase Shift Keying
(M-PSK) modulation are derived. In addition, an asymptotic SER
approximation is also provided which is shown to be tight at high
signal-to-noise ratio (SNR). Finally, the analytical results confirm that
for a network of N nodes, a full diversity order of (N − 1) per node is
achieved by the proposed STNC cooperative communication scheme.

Index Terms—Cooperation, decode-and-forward, diversity, many-to-
many, symbol-error-rate, wireless network coding

I. INTRODUCTION

NETWORK CODING has recently emerged as an effective ap-
proach for efficiently distributing data and increasing network

throughput [1] [2]. Cooperative communications have also attracted
much attention in the research literature due to their achievable
spatial diversity gains, enhanced coverage and improved transmission
reliability [3] [4]. In conventional relay networks, a set of N relay
nodes are deployed between the source and destination nodes and
the available network bandwidth is split into N + 1 orthogonal
channels using TDMA. However, with the increase in the number
of relay nodes, the conventional multinode relay networks become
excessively bandwidth inefficient. Moreover, the classical cooperative
communication protocols are not well suited for distributing infor-
mation from one or more source nodes to possibly many destination
nodes, simultaneously. This in turn suggests the use of the concept
of wireless network coding for exchanging data symbols among
multiple cooperative nodes over wireless networks.

Recently, there have been several research works aiming at
employing wireless network coding in cooperative networks. For
instance, in [5], location-aware cooperative wireless network coding
through the novel concept of Wireless Network Cocast (WNC) was
proposed. In particular, it was illustrated that with WNC, a reduction
in aggregate transmission power and delay can be achieved along
with incremental diversity for different relaying schemes. In [6],
an algebraic superposition of channel codes over a finite field is
proposed to allow two nodes to cooperate in transmitting information

to a single destination. Bi-directional relaying between two source
nodes through a single relay node employing wireless network
coding has been introduced in [7]. An outage analysis of network
coded communication of multiple users with a single destination
node through a set of dedicated relay nodes was analyzed in [8].

In this paper, the merits of network coding and cooperative
diversity are exploited to allow N nodes ”users” to exchange data
between each other with the novel concept of Space-Time Network
Coding (STNC). In this work, the Decode-and-Forward (DF) relaying
protocol [3] is studied within the concept of STNC. In particular,
the STNC scheme is based on linear wireless network coding over
DF nodes and the communication is split into two phases: 1)
Broadcasting Phase and 2) Cooperation Phase. In the former phase,
each node broadcasts its data to the other nodes in its dedicated time
slot; while in the latter phase, in each time-slot, a set of (N−1) nodes
transmit linearly network coded signals while a single destination
node receives the other nodes’ transmissions. A simple multiuser
detection [9] is then applied at each node to separate the different
data symbols received from the different nodes.

Exact analytical derivations of the symbol error rate (SER) perfor-
mance of the STNC scheme and comparative simulation results are
provided in this paper. Moreover, tight asymptotic approximation
at high signal-to-noise ratio is also analyzed and the cooperative
diversity order achievable with the STNC scheme is verified. It is
illustrated that with the STNC scheme, N information symbols of
all the N nodes can be exchanged over a total of 2N time-slots (i.e.
1/2 symbol per node per channel use) as well as achieving a full
diversity order of (N − 1) per node.

In the remainder of this paper, the system model and communi-
cation phases are presented in Section II. The multi-source signal
detection and the exact SER analysis are presented in Sections
III and IV, respectively. In Section V, the asymptotic upper-bound
SER expression is derived while the SER performance evaluation is
presented in Section VI. The conclusions are drawn in Section VII.

II. SYSTEM MODEL

Consider a wireless network consisting of N nodes (N ≥ 3)
denoted as S1, S2, . . . , SN . In this model, each node is equipped
with only one antenna and can act as a source, relay or destination.
Without loss of generality, the Decode-and-Forward (DF) coopera-
tion protocol is considered. The N nodes are assumed to have their
own information symbols as x1, x2, . . . , xN , respectively, and each
node wishes to exchange its own data symbol with the other nodes.

The communication between all the source nodes is split into two
main phases, namely the Broadcasting Phase and the Cooperation
Phase, over a total of 2N time-slots, N time-slots each. During the
broadcasting phase, source node Sj is assigned a time-slot Tj in
which it broadcasts its own data symbol to the other nodes Si for
i ∈ {1, 2, . . . , N} for i �= j. That is, the broadcasting phase is an
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Fig. 1. Space-Time Network Coding - Broadcasting and Cooperation Phases - N = 4
Nodes

information exchange phase, which upon completion, each node Si

will have received a set of (N − 1) symbols x1, . . . , xj , . . . , xN for
j �= i from the other nodes. With respect to the cooperation phase,
each node acts as a relay for the other nodes with one node being the
destination in each time-slot. In particular, each node, except a single
receiving node, forms a linearly-coded signal from the overheard
symbols and transmits it to the receiving node, which upon receiving
the (N − 1) linearly-coded signals, performs a multi-source signal
separation to extract the desired symbol from each node. To allow for
joint detection/source separation for each of the linearly-coded trans-
mitted symbols of the different nodes at each receiving node, each
symbol xj is spread using a signature waveform sj(t). The cross-
correlation between waveforms sj(t) and si(t) over a symbol dura-
tion Ts is given by ρj,i = 〈sj(t), si(t)〉 � (1/Ts)

∫ Ts

0
sj(t)s∗i (t)dt,

where it is assumed that ρj,j = ||sj(t)||2 = 1. It is further assumed
that each node knows the signature waveform of the other nodes
in the network which is required for multi-source detection. The
cooperative STNC communication scheme is illustrated in Fig. 1.

A. Broadcasting Phase

In this subsection, the signal model for an arbitrary symbol xj ,
j ∈ {1, 2, . . . , N}, transmitted during the broadcasting phase from
node Sj to the other nodes is presented. Node Sj broadcasts it own
data symbol xj to the other nodes in its dedicated jth time-slot.
Thus, the signal received at each node Si for i �= j is given by

yj,i(t) =
√

Psj
hj,ixjsj(t) + nj,i(t), (1)

where Psj
is the transmitted power by node Sj (the power allocation

will be discussed in a later section), sj(t) is the signature waveform
of node Sj , and nj,i(t) is the additive white Gaussian noise sample
at node Si due to the signal transmitted by node Sj . In (1), nj,i(t)
is modeled as a zero-mean complex Gaussian random variable with
variance N0. Moreover, hj,i is the flat fading channel coefficient
between nodes Sj and Si that is distributed as a zero-mean complex
Gaussian random variable hj,i ∼ CN (0, σ2

j,i), where σ2
j,i is the

channel gain. In addition, hj,i can be expressed as hj,i = |hj,i|ejφj,i ,
where |hj,i| = αj,i is the Rayleigh distributed magnitude as

fαj,i
(α) =

2α

σ2
j,i

exp

(
− α2

σ2
j,i

)
, α ≥ 0, (2)

with φj,i being the phase response, uniformly distributed over the
interval [−π, π). Moreover, it is assumed that the receiving node Si

can perfectly estimate the channel coefficient hj,i from the received
signal yj,i. Also, the channels are assumed to be reciprocal (i.e.
hi,j = hj,i) as in Time Division Duplexing (TDD) systems.

The broadcasting phase can be put in matrix form as follows
S1 · · · Sj · · · SN

T1

...
Tj

...
TN

⎡
⎢⎢⎢⎢⎢⎢⎣

√
Ps1x1 · · · 0 · · · 0

...
. . .

... · · ·
...

0 · · · √
Psj xj · · · 0

... · · ·
...

. . .
...

0 · · · 0 · · · √
PsN xN

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3)

The detection of the data symbol xj at the node Si can be
achieved by cross-correlating the received signal yj,i(t) in (1) with
the signature waveform sj(t) as

yj,i = 〈yj,i(t), sj(t)〉 =
√

Psj
hj,ixj + nj,i, (4)

where nj,i ∼ CN (0, N0). Upon the completion of broadcasting
phase (i.e. after N time-slots), each node Si will have received a
set of (N −1) symbols {yj,i}N

j=1,j �=i from all the other nodes in the
network. With the knowledge of the channel coefficients at the ith

node, a matched filtering operation is applied on each of the received
signals yj,i, in the form of

(√
Psj

h∗
j,i/N0

)
yj,i. Therefore, the SNR

at the output of the matched-filter is expressed as

γj,i =
Psj

|hj,i|2
N0

. (5)

After each source Si has decoded its (N − 1) received symbols
{yj,i}N

j=1,j �=i, the set of available decoded data symbols at each node
in the network is given by the matrix

X =

⎡
⎢⎢⎢⎢⎢⎣

∗ x2I2,1 · · · xN−1IN−1,1 xNIN,1

x1I1,2 ∗ · · · xN−1IN−1,2 xNIN,2

...
...

. . .
...

...
x1I1,N−1 x2I2,N−1 · · · ∗ xNIN,N−1

x1I1,N x2I2,N · · · xN−1IN−1,N ∗

⎤
⎥⎥⎥⎥⎥⎦

S1

S2

...
SN−1

SN

,

(6)

where Ij,i acts as a binary indicator function as follows

Ij,i =

{
1, if node Si decodes xj correctly

0, otherwise
. (7)

B. Cooperation Phase

The analysis of the Cooperation Phase is considered in this subsec-
tion, with the assumption that the nodes are perfectly synchronized
by a distributed algorithm. In the Cooperation Phase, each node Si

in its assigned time-slot receives a signal of the N −1 source nodes.
In particular, each node Sj other than the destination node Si forms
a linearly-coded signal of the other source nodes’ received symbols
and transmits it to node Si during the ith time-slot, simultaneously.
Moreover, at each node Sj , each linearly-coded signal contains at
most the received data symbols from (N − 2), since each node
aims at relaying the remaining (N − 2) nodes’ symbols to node
Si. Specifically, the signal transmitted to node Si from node Sj is
composed from the received data symbols of the jth row in the
matrix X excluding the data symbol xiIi,j (since that symbol xi

was originally generated at node Si) as follows

X i
j = {xkIk,j}N

k=1,k �=j \ xiIi,j . (8)

Based on equation (6), during the ith time-slot, the signal transmitted
from the jth node is given by

f(X i
j )(t) =

h∗
j,i

|hj,i|
N∑

k=1
k �=i,k �=j

√
Pk,jxkIk,jsk(t), (9)
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where sk(t) is the signature waveform of the kth node and Pk,j is
the power at jth node used to transmit the symbol xk. Moreover, hj,i

is the channel coefficient between source nodes Sj and Si; which
has already been estimated in the Broadcasting Phase during the
jth time-slot. Clearly, the functions f(X i

j ) at each node are linear
combinations of symbols received from other nodes. The operation
of the Cooperation Phase can be expressed in matrix form as follows

S1 · · · Si · · · SN

T1

...
Ti

...
TN

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · f(X 1
i ) · · · f(X 1

N )
...

. . .
... · · ·

...
f(X i

1) · · · 0 · · · f(X i
N )

... · · ·
...

. . .
...

f(XN
1 ) · · · f(XN

i ) · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (10)

The received signal at the ith node during the ith time-slot from
the (N − 1) other nodes is given by

Yi(t) =
N∑

m=1
m�=i

hm,if(X i
m)(t) + wi(t) =

N∑
m=1
m�=i

xmai,msm(t) + wi(t),

(11)
where wi(t) is the additive white Gaussian noise at node Si and

ai,m =
N∑

k=1
k �=i,k �=m

|hk,i|
√

Pm,kIm,k, (12)

where the summation in (12) contains at most (N − 2) terms,
depending on how many data symbols have been decoded correctly.

III. MULTI-SOURCE SIGNAL DETECTION

Based on the received signal Yi(t), node Si performs a multi-
source detection operation to extract the (N − 1) symbols of the
other nodes. Each soft symbol xj , j ∈ {1, 2, . . . , N}i�=j is detected
by passing the received signal Yi(t) through a Matched Filter Bank
(MFB) of (N − 1) branches, matched to the corresponding set of
the nodes’ signature waveforms sj(t) for j ∈ {1, 2, . . . , N}i�=j and
sampling them at the end of the symbol duration Ts to obtain

Yi,j = 〈Yi(t), sj(t)〉 =
N∑

m=1
m�=i

xmai,mρm,j + wi,j , (13)

where ρm,j is the correlation coefficient between the signature
waveforms sm(t) and sj(t). The matched-filtered signal forms an
(N − 1) × 1 vector comprising all the Yi,j’s signals as

YYYi = RRRiAAAixxxi + wwwi, (14)

where YYYi = [Yi,1, . . . ,Yi,i−1,Yi,i+1, . . . ,Yi,N ]T , (15)

xxxi = [x1, . . . , xi−1, xi+1, . . . , xN ]T , (16)

wwwi = [wi,1, . . . , wi,i−1, wi,i+1, . . . , wi,N ]T ∼ CN (0, N0RRRi), with

RRRi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · ρ1,(i−1) ρ1,(i+1) · · · ρ1,N

...
. . .

...
... · · · ...

ρ(i−1),1 · · · 1 ρ(i−1),(i+1) · · · ρ(i−1),N

ρ(i+1),1 · · · ρ(i+1),(i−1) 1 · · · ρ(i+1),N

... · · · ...
...

. . .
...

ρN,1 · · · ρN,(i−1) ρN,(i+1) · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(17)
and

AAAi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai,1 · · · 0 0 · · · 0
...

. . .
...

... · · · ...
0 · · · ai,(i−1) 0 · · · 0
0 · · · 0 ai,(i+1) · · · 0
... · · · ...

...
. . .

...
0 · · · 0 0 · · · ai,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

where both matrices RRRi and AAAi have dimensions (N −1)× (N −1).
The signal vector YYYi can then be decorrelated with the assumption
that matrix RRRi is invertible with the inverse matrix RRR−1

i which yields

Ỹ̃ỸYi = RRR−1
i YYYi = AAAixxxi + w̃̃w̃wi, (19)

where w̃̃w̃wi ∼ CN (0, N0RRR
−1
i ). Therefore, the soft symbol of xj can

be obtained from detected signal vector Ỹ̃ỸYi at node Si at the output
of the jth branch of the MFB and is expressed as

Ỹi,j = ai,jxj + w̃i,j , (20)

where w̃i,j ∼ CN (0, N0ri,j) with ri,j being the jth diagonal element
of the inverse matrix R−1

i associated with the data symbol xj and
ai,j is given by (12). Without loss of generality, let ρj,i = ρ for all
j �= i. Thus, it can be easily shown that

ri,j =
1 + (N − 3)ρ

1 + (N − 3)ρ − (N − 2)ρ2
� rN−1. (21)

It should be noted that upon the completion of the Broadcasting
Cooperation Phases, the jth data symbol xj , j ∈ {1, 2, . . . , N}i�=j is
relayed at most (N − 2) times before reaching node Si. In addition,
since in the Broadcasting Phase, the source node Sj has already
broadcasted its data symbol xj to all the other nodes including Si,
this implies that node Si received at most a total of (N − 1) copies
of the symbol xj . This fact will be used later to prove that a full
diversity order of (N − 1) per node is achieved at a high SNR.

On the other hand, since Ij,i ∈ {0, 1} for i �= j, represents the
detection state at Si of the data symbol xj ; then, in general, node
Sk for k ∈ {1, 2, . . . , N}k �=i,k �=j , forwards the symbol xj to node
Si only if it has successfully detected it. Therefore, at node Si, all
the Ij,k’s form a binary (base-2) number

Ii
j = [Ij,N . . . Ij,k=(i+1) Ij,k=(i−1) . . . Ij,1]2 \ Ij,j , (22)

that represents one of the 2(N−2) detection states of the (N − 2)
nodes Sj’s acting as relay nodes. In other words, |Ii

j | contains at
most (N − 2) 1’s. For example, for N = 4, the detection state of x1

at node S2 is given by I2
1 = [I1,4 I1,3]2 with |I2

1 | taking decimal
values in {0, 1, 2, 3} in the form of I2

1 = [0 0]2, [0 1]2, [1 0]2, or
[1 1]2, respectively.

The detection of data symbol xj at the node Si can be achieved
through combining the signals received in the Broadcasting and
Cooperation Phases. However, during the Cooperation Phase, it
might occur that ai,j = 0 (i.e. the receiving node might not receive
any linear combination for some symbol xj and this occurs when all
the other nodes decode xj incorrectly, simultaneously). This in turn
implies that the detection state for symbol xj at node Si is |Ii

j | = 0.
Thus, the jth branch of the MFB Ỹi,j is not added into the detected
x̃i

j . Hence, for |Ii
j | = 0, a simple phase correction is applied to

the received signal yj,i during the jth time-slot in the Broadcasting
Phase by multiplying it with the deterministic conjugate of the known
channel phase response (i.e. x̃i

j = e−jφj,iyj,i). However, for |Ii
j | > 0

(i.e. ai,j �= 0), the phase-corrected signal is also combined with Ỹi,j

which yields
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x̃i
j = e−jφj,iyj,i + Ỹi,j , (23)

where yj,i =
√

Psj
hj,ixj + nj,i. Upon substitution of yj,i, (12) and

(20) into (23), the combined symbol x̃j at node Si becomes

x̃i
j =

⎛
⎜⎝|hj,i|

√
Psj

+
N∑

k=1
k �=i,k �=j

|hk,i|
√

Pj,kIj,k

⎞
⎟⎠xj + ηi,j , (24)

where ηi,j = e−jφj,inj,i + w̃i,j is the zero-mean equivalent noise
with variance (1 + rN−1)N0, with the assumption that nj,i and w̃i,j

are statistically independent. Hence, the conditional signal-to-noise
ratio given the detection state Ii

j of the combined data symbol x̃i
j at

node Si can be expressed as

γi
j|Ii

j
=

⎧⎪⎪⎨
⎪⎪⎩

|hj,i|2Psj

N0
, if |Ii

j | = 0⎛
⎝ |hj,i|

√
Psj

+
∑N

k=1
k �=i,k �=j

|hj,i|
√

Pj,kIj,k

⎞
⎠2

(1+rN−1)N0
, if |Ii

j | > 0

.

(25)
The total transmit power Pj associated with transmitting symbol
xj is distributed among the (N − 1) transmissions. In particular,
Pj = Psj

+
∑N

k=1
k �=i,k �=j

Pj,k, where Psj
is the transmit power at node

Sj ; while the Pj,k’s are the power allocations for the remaining
transmissions at the other nodes. Without any loss of generality, it is
assumed that all the symbols are assigned the same total power, such
that P = Pj , ∀j ∈ {1, 2, . . . , N}. For simplicity, it is further assumed
that Ps = Psj

= Pj,k = P/(N − 1), ∀k ∈ {1, 2, . . . , N}k �=i,k �=j .
However, it should be noted that optimal power allocation among
the different nodes is also possible; however is beyond the scope of
this paper as it would deviate from the main thrust of this work.

IV. SYMBOL ERROR RATE (SER) PERFORMANCE ANALYSIS

In this section, the exact SER expression for the M-ary Phase
Shift Keying (M-PSK) modulation for the DF protocol of the
symbol xj detected at node Si is derived. Since the detection at
each node is statistically independent from the others, Ij,k’s for
k ∈ {1, 2, . . . , N}k �=i,k �=j are defined as independent Bernoulli
random variables with a distribution expressed as [4]

Υ(Ij,k) =

{
1 − Pj,k, if Ij,k = 1
Pj,k, if Ij,k = 0

, (26)

where Pj,k is the SER of detecting xj at the Sk node. Thus, the
probability of xj detection in state Ii

j at node Si is written as

Pr(|Ii
j |) =

N∏
k=1

k �=i,k �=j

Υ(Ij,k), (27)

where in the example of N = 4, for |I2
1 | = 1 (i.e. I2

1 = [0 1]2),
Pr
(|I2

1 | = 1
)

= P1,4 (1 − P1,3). In general, the conditional SER of
M-PSK systems with the instantaneous signal-to-noise ratio (SNR)
γ given a generic set of channel coefficients {h} is expressed as [10]

Ψ|{h}(γ) � 1
π

∫ (M−1)π/M

0

exp
(
−bPSKγ

sin2 θ

)
dθ, (28)

where bPSK = sin2(π/M). Based on (4 - 5), the SNR in detecting
the symbol xj at node Sk given the channel gain is γj,k =
Psj

|hj,k|2/N0. In general, the magnitude squared of a circularly sym-
metric Gaussian random variable hj,k is modeled as an exponential
random variable with rate 1/σ2

j,k (i.e. |hj,k|2 ∼ Exp(1/σ2
j,k)), where

σ2
j,k is the channel gain. Thus, by averaging the expression in (28)

with respect to |hj,k|2, the SER of detecting xj at Sk is obtained as

Pj,k =
1

π

∫ (M−1)π/M

0

G

(
bPSKPs

N0 sin2 θ
, σ2

j,k

)
dθ, (29)

where G(w(θ), σ2) is defined in (54) in Appendix I. On the other
hand, based on the conditional SNR γi

j|Ii
j

expression in (24), the
conditional SER of symbol xj at node Si can be shown to be

Ψ|{hk,i}N
k=1,k �=i

(γi
j|Ii

j
) =

1

π

∫ (M−1)π/M

0

exp

⎛
⎝−

bPSKγi
j|Ii

j

sin2 θ

⎞
⎠ dθ, (30)

which reduces to the following two cases:
1) |Ii

j | = 0: After averaging over the exponential random variable
|hj,i|2, the conditional SER can be expressed as

Ψ(γi
j||Ii

j |=0) =
1

π

∫ (M−1)π/M

0

G

(
bPSKPs

N0 sin2 θ
, σ2

j,i

)
dθ. (31)

2) |Ii
j | > 0: Similarly, the conditional SER can be obtained as

Ψ|{hk,i}N
k=1,k �=i

(γi
j||Ii

j |>0) =
1

π

∫ (M−1)π/M

0

exp

(
− C2

PSK

2 sin2 θ
H2

i,j

)
dθ,

(32)
where

H2
i,j =

⎛
⎜⎝|hj,i| +

N∑
k=1

k �=i,k �=j

|hk,i|Ij,k

⎞
⎟⎠

2

, (33)

and
CPSK =

√
2bPSKPs

(1 + rN−1)N0
. (34)

Clearly, H2
i,j is a sum of 1 + |Ii

j | Rayleigh random variables.
The analysis for the conditional SER is analogous to that of
the equal gain combining in [11], using the Gauss-Hermite
formula [12, p. 890, eq.(25.4.46)]. Thus, after averaging over
the channel statistics, the conditional SER is given by [11]

Ψ(γi
j||Ii

j |>0) =
1

2π2

∫ (M−1)π/M

0

1√
iηj(θ)

Np∑
n=1

wniFj

(
κn√
iηj(θ)

, θ

)
dθ,

(35)
where κn, wn are the zeros and weight factors as given in
[12, p. 924, table (25.10)] and Np is the order of the Hermite
polynomial HNp

(·), respectively. It was verified that Np = 20
results in excellent accuracy. In addition [11]

iηj(θ) =
sin2(θ)
2C2

PSK

+
1
4

⎛
⎜⎝σ2

j,i +
N∑

k=1
k �=i,k �=j

σ2
j,kIj,k

⎞
⎟⎠ , (36)

and iFj(ν, θ) = iRj(ν, θ) cos (iΘj(ν, θ)), with

iRj(ν, θ) =
√

X2(θ) + Y 2(ν, θ)×

Dj,i

N∏
k=1

k �=i,k �=j

√
A2(ν, σ2

j,kIj,k) + B2(ν, σ2
j,kIj,k), (37)

and iΘj(ν, θ) is defined in (38) (top of next page). On the
other hand, X(θ), Y (ν, θ) are defined as

X(θ) =

√
π

2

sin(θ)

CPSK
, and Y (ν, θ) =

ν sin2(θ)

C2
PSK

1F1

(
1

2
;
3

2
;
ν2 sin2(θ)

2CPSK

)
(39)

respectively, where sgn(·) is the sign function and 1F1 (·; ·; ·)
is the Kummer confluent hypergeometric function [12]. More-
over, A(ν, τ) and B(ν, τ) are defined as
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iΘj(ν, θ) = arctan

(
Y (ν, θ)

X(θ)

)
+ arctan

(
B(ν, σ2

j,i)

A(ν, σ2
j,i)

)
+

N∑
k=1

k �=i,k �=j

arctan

(
B(ν, σ2

j,kIj,k)

A(ν, σ2
j,kIj,k)

)

+
π

2

⎛
⎜⎝N − sgn (Y (ν, θ)) − sgn

(
B(ν, σ2

j,i)
) − N∑

k=1
k �=i,k �=j

sgn
(
B(ν, σ2

j,kIj,k)
)⎞⎟⎠ .

(38)

Ψ̄(γi
j||Ii

j |=�
) ≈
(

N0

P

)�+1
(

(1 + rN−1)

μbPSKσ2
i

(
1 + π

4
�
)
)�+1 F1

(
� + 3

2
, 1
2
, � + 1, � + 5

2
, sin2

(
(M−1)π

M

)
,− (1+rN−1)N0

μPbP SKσ2
i (1+ π

4 �)
sin2

(
(M−1)π

M

))
π(2� + 3)

(
sin

(
(M − 1)π

M

))2�+3

.

(50)

A(ν, τ) = 1F1

(
−1

2
;
1
2
;
ν2τ

4

)
, and B(ν, τ) = Γ

(
3
2

)√
τν,

(40)
respectively; with Γ(·) being the gamma function [12]. Also,
Dj,i is defined as

Dj,i =
√

A2(ν, σ2
j,i) + B2(ν, σ2

j,i). (41)

Given the detection state Ii
j , which takes 2(N−2) values, the SER

for detecting the data symbol xj at the ith node can be calculated
using the law of total probability as

P j
SER =

2(N−2)−1∑
�=0

Pr(x̃i
j �= xj ||Ii

j | = 	) · Pr(|Ii
j | = 	)

= Ψ(γi
j||Ii

j |=0) · Pr(|Ii
j | = 0) +

2(N−2)−1∑
�=1

Ψ(γi
j||Ii

j |=�) · Pr(|Ii
j | = 	)

(42)

where Pr(x̃i
j �= xj |Ii

j) is the probability of making a symbol error
for a particular detection state, and Pr(|Ii

j |) is as defined (27).

V. ASYMPTOTIC UPPER BOUND SER ANALYSIS

The asymptotic upper-bound SER performance is obtained at a
high SNR by performing a series of approximations to the term
Ψ(γi

j||Ii
j |=�

), for  ∈ {0, 1, . . . , 2(N−2) − 1} and also the term

Pr(|Ii
j |). It should be noted that finding the distribution of the

sum of independent but not identical Rayleigh random variables as
given by H2

i,j in (33) can be extremely difficult. Therefore, it is
assumed that the channel gains are identical (i.e. σ2

j,i = σ2
k,i =

σ2
i , ∀k ∈ {1, 2, . . . , N}k �=i). This implies that the same average

SNR/symbol/path is assumed between the nodes in the network.
At high SNR, it is expected that the SER Pj,k of detecting xj

at node Sk for k ∈ {1, 2, . . . , N}k �=i,k �=j , becomes sufficiently
small such that 1 − Pj,k ≈ 1. Thus, only the terms in the
quantity Pr(|Ii

j |) =
∏N

k=1
k �=i,k �=j

Υ(Ij,k) that will count are those

corresponding to the nodes that have decoded their received xj

symbol incorrectly [4]. Hence, let 0Φj and 1Φj denote the sub-
sets of the indices of the nodes that decode xj erroneously and
correctly, respectively. That is, 0Φj = {k : Ij,k = 0} and
1Φj = {k : Ij,k = 1}, for k ∈ {1, 2, . . . , N}k �=i,k �=j . Moreover,
|0Φj | and |1Φj | ∈ {0, 1, . . . , N − 2}. In addition, it should be
noted that |0Φj | + |1Φj | = (N − 2) for any detection state Ii

j .
Also, since, the transmitter powers allocated so source node Sj and
the remaining nodes for the transmission of symbol xj is defined
as a ratio of the total power P as Ps = Psj

= Pj,k = μP ,
∀k ∈ {1, 2, . . . , N}k �=i,k �=j with μ = 1/(N − 1), the expression

for Pr(|Ii
j |) given in (27) can then be expressed with the aid of (55)

(see Appendix I) as

Pr(|Ii
j |) �

N∏
k∈0Φj

Υ(Ij,k) =
(

N0

P

)|0Φj |( ϕ

μbPSKσ2
i

)|0Φj |
, (43)

where

ϕ =
1
π

∫ (M−1)π/M

0

sin2(θ) dθ =
2π(M − 1) + M sin

(
2π
M

)
4πM

.

(44)
With respect to Ψ(γi

j||Ii
j |=0

), the upper-bound approximation at high
SNR can be expressed with the aid of (55) as

Ψ̄(γi
j||Ii

j |=0) = F̃

(
bPSKPs

N0 sin2 θ
, σ2

i

)
�
(

N0

P

)
ϕ

μbPSKσ2
i

. (45)

In order to find an upper-bound approximation for Ψ̄(γi
j||Ii

j |=�
), the

expression (33) must be approximated. Based on (25), the conditional
SNR for |Ii

j | =  is given by

γi
j||Ii

j |=� =
Ps

(1 + rN−1)N0

⎛
⎜⎝|hj,i| +

N∑
k=1

k �=i,k �=j

|hj,i|Ij,k

⎞
⎟⎠

2

. (46)

Thus, the average SNR conditioned on the network detection state
can be shown to be [11]

γav,(�+1) = γsi

(
1 +

π

4

)

, (47)

where γsi
= Psσ

2
i /(1+rN−1)N0. An accurate approximation to the

conditional SER has been determined in [11] and is expressed as

Ψ̄(γi
j||Ii

j |=�) = I(�+1)

(
bPSKγav,(�+1),

(M − 1)π
M

)
. (48)

In general

IL (ζ, φ) =
1
π

∫ φ

0

(
sin2 φ

sin2 φ + ζ

)L

dφ. (49)

Therefore, Ψ̄(γi
j||Ii

j |=�
) with the aid of (56) (see Appendix II) can

be shown to be as expressed in (50) (top of page). Therefore, the
asymptotic SER expression, after a series of manipulations, can be
written as (51) (top of next page), where it should be noted that
1 + |0Φj | + |1Φj | = (N − 1).

The cooperative diversity order of a wireless system is identified
from the SER expression as follows [4]

P j
SER ∼ (SNR · Δ)−d, (52)

where SNR � P/N0 is the signal-to-noise ratio term, the exponent d
denotes the diversity order and Δ defines the cooperation gain. Thus,
it is clear that d = N − 1 and the STNC achieves full diversity.
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P j
SER �

(
N0

P

)N−1

⎛
⎜⎜⎜⎜⎜⎝

(
ϕ

μbPSKσ2
i

)N−1

+

2(N−2)−1∑
�=1

(
1 + rN−1

1 + π
4
|1Φj |

)|1Φj |+1
2F1

(
|1Φj | + 3

2
, 1
2
, |1Φj | + 5

2
, sin2

(
(M−1)π

M

))
π(μbPSKσ2

i )N−1(2|1Φj | + 3)

(
sin

(
(M − 1)π

M

))2|1Φj |+3

(ϕ)|0Φj |

⎞
⎟⎟⎟⎟⎟⎠ . (51)
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Fig. 2. QPSK SER Performance of the STNC for N = 3 and N = 4 Nodes

VI. SER PERFORMANCE EVALUATION

In this section, the simulated QPSK SER performance and the
theoretical exact and upper-bound SER expressions of the STNC
scheme with N = 3 and N = 4 nodes are evaluated. In the following
simulations, all the channel coefficients are i.i.d. with equal unity
gain (i.e. hi,j � CN (0, 1), ∀i, j ∈ {1, 2, . . . , N} and i �= j).

It is clear from Fig. 2, that as the number of nodes increases,
the better the performance. This is due to the fact that with the
increase in N , higher diversity gains are achieved. In addition, it
is noticed that the best SER performance is achieved when ρ = 0,
that is the signature waveforms are perfectly orthogonal and there
is no interference between the nodes. However, when ρ = 0.75,
there is about 2 dB SER performance degradation. This in turn
signifies the importance of the STNC scheme as it allows N nodes to
communicate simultaneously and achieves N−1 diversity order with
only a slight degradation for non-orthogonal signature waveforms.

VII. CONCLUSIONS

In this paper, the novel Space-Time Network Coding (STNC)
scheme that allows N nodes to exchange their data symbols over
a total of 2N time-slots, was presented. The exact and asymptotic
SER expressions were derived and it was shown that with the STNC
scheme, each node achieves a full diversity order of N − 1. Finally,
it is concluded that the STNC serves as a potential many-to-many
cooperative communication scheme and its scope goes much further
beyond the generic source-relay-destination communications.

VIII. APPENDIX I

Let Y be an exponentially distributed random variable with
probability density function

fY (y) =
1
σ2

exp
(
− y

σ2

)
, y ≥ 0, (53)

where σ2 is the rate parameter. Averaging the function exp(−w(θ)y)
over the distribution of the exponential random variable Y , yields

G(w(θ), σ2) =

∫ ∞

0

exp (−w(θ)y)

(
1

σ2

)
exp
(
− y

σ2

)
dy =

1

1 + w(θ)σ2
,

(54)

where w(θ) is some function of θ.
For large values of w(θ), the denominator of G(w(θ), σ2) can be

approximated as 1 + w(θ)σ2 ≈ w(θ)σ2. Thus,

Ḡ(w(θ), σ2) � 1
w(θ)σ2

. (55)

IX. APPENDIX II

The term IL (ξ, φ) can be shown to be

IL (ξ, φ) =
1

π

∫ φ

0

(
sin2 φ

sin2 φ + ξ

)L

dφ

=
(1/ξ)L(sin(φ))2L+1

π(2L + 1)
F1

(
L +

1

2
,
1

2
, L, L +

3

2
, sin2(φ),− sin2(φ)

ξ

)
,

(56)

where

F1 (α;β, β′; ζ;x, y) =
∞∑

m=0

∞∑
n=0

(α)m+n(β)m(β′)n

m!n!(ζ)m+n
xmyn, (57)

is the Appell hypergeometric function of the first kind [13]. It can
be shown that for y → 0, the Appell hypergeometric function can
be approximated as [13]

F1 (α;β, β′; ζ;x, y) ≈ 2F1 (α, β, γ;x) , (58)

where 2F1 (α, β; γ;x) is the hypergeometric function [12].
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